Algorithm refinement for the stochastic Burgers' equation

نویسندگان

  • John B. Bell
  • Jasmine Foo
  • Alejandro L. Garcia
چکیده

In this paper, we develop an algorithm refinement (AR) scheme for an excluded random walk model whose mean field behavior is given by the viscous Burgers’ equation. AR hybrids use the adaptive mesh refinement framework to model a system using a molecular algorithm where desired while allowing a computationally faster continuum representation to be used in the remainder of the domain. The focus in this paper is the role of fluctuations on the dynamics. In particular, we demonstrate that it is necessary to include a stochastic forcing term in Burgers’ equation to accurately capture the correct behavior of the system. The conclusion we draw from this study is that the fidelity of multiscale methods that couple disparate algorithms depends on the consistent modeling of fluctuations in each algorithm and on a coupling, such as algorithm refinement, that preserves this consistency. ! 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Compare Adomian Decomposition Method and Laplace Decomposition Method for Burger's-Huxley and Burger's-Fisher equations

In this paper, Adomian decomposition method (ADM) and Laplace decomposition method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equations. In ADM the algorithm is illustrated by studying an initial value problem and LDM is based on the application of Laplace transform to nonlinear partial differential equations. In ADM only few terms of the expansion are required t...

متن کامل

Markov jump process approximation of the stochastic Burgers equation ∗

Stochastics and Dynamics, 4(2004),245–264. We consider the stochastic Burgers equation ∂ ∂t ψ(t, r) = ∆ψ(t, r) +∇ψ(t, r) + √ γψ(t, r)η(t, r) (1) with periodic boundary conditions, where t ≥ 0, r ∈ [0, 1], and η is some spacetime white noise. A certain Markov jump process is constructed to approximate a solution of this equation.

متن کامل

Convergence Rate for the Approximation of the Limit Law of Weakly Interacting Particles: Application to the Burgers Equation

In this paper we construct a stochastic particle method for the Burgers equation with a monotone initial condition; we prove that the convergence rate is O(1= p N + p t) for the L 1 (IR)-norm of the error. To obtain that result, we link the PDE and the algorithm to a system of weakly interacting stochastic particles; the diiculty of the analysis comes from the discontinuity of the interaction k...

متن کامل

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 223  شماره 

صفحات  -

تاریخ انتشار 2007